CREATED BY ELEASYS LLC

Tag: genetic engineering

How can the genetic engineering treatment of red bone marrow by Zynteglo help beta-thalassemia patients?

Teachable moment in classrooms:

  1. cellular basis of life chapter – concept of one gene, one protein
  2. cellular basis of life chapter – concept of gene mutation leading to protein malfunction
  3. cellular basis of life chapter – mRNA translation is needed for protein synthesis
  4. blood chapter – red blood cells are made in the red bone marrow
  5. blood chapter – the role of globin chains in hemoglobin function

The news item:  Recently the following report appeared:

https://timesnewscity.com/bluebirds-2-8m-gene-therapy-becomes-most-expensive-drug-after-us-approval/

The article states that about 1,500 patients need blood transfusion every 2-5 weeks, and that Zynteglo is a gene therapy.

So, Why Do I Care??

The most severe type of beta-thalassemia causes serious anemia with the symptoms of continuous lethargy, fatigue, tiredness. To fight this, the patients require regular blood transfusions. Those patients expected to live until about the age of 50. in the US there are about 1500-3000 such patients. New treatment approaches give the hope of longer life to those patients.

Plain English, Please!!! First, let’s talk about what beta-thalassemia is. This disorder is caused by the missing beta-globin protein in hemoglobin. The protein is missing because the beta-globin gene has mutations that prevent the mRNA formation for beta-globin. The outcome is that hemoglobin is abnormal, because it is formed only from the alpha-globin proteins. Such abnormal hemoglobin makes cells of the red bone marrow to burst, reducing the production of oxygen transporter red blood cells. The decreased oxygen transport cause anemia, the starvation of cells for oxygen.

Second, let’s talk about how red blood cells are made. The damage of the beta-thalassemia is done in the red bone marrow, where red blood cells are formed. In the red bone marrow the red blood cells move

Can we really make human proteins for medical treatments in lettuce plants?

TeachableMedicalNews article TMN12112022

Teachable moment in classrooms:

  1. cellular basis of life chapter – concept of one gene, one protein
  2. cellular basis of life chapter – protein synthesis on ribosomes
  3. skeletal system chapter – actions of osteoblasts and osteoclasts in living bones
  4. skeletal system chapter – osteons and trabeculae provide structural strength to bones
  5. endocrine system chapter – actions of PTH made by parathyroid gland

The news item:  Recently the following report appeared in cyberspace:

Humans on Mars may feast on gene-edited salad to stop bones breaking

Genetically modified salad could be crucial to keeping the bones of humans on Mars healthy.

The article states that a human gene was added to lettuce, and that the human protein, parathyroid hormone (PTH), will fight the osteoporosis that astronauts develop in space. Astronauts lose 1.5% of bone mass from weight-bearing bones, and the expectation is the PTH made by the lettuce will prevent bone loss on a trip to Mars that may last for over a year.

So, Why Do I Care??  Osteoporosis, as stated in the article, weakens bones, but not only in astronauts. Over 10 million people in the US alone has osteoporosis that makes fractures more likely. PTH is currently administered through injections, so, if we could demonstrate that eating PTH-enriched lettuce, then treatment of osteoporosis may become easier.

Plain English, Please!!! First, let’s summarize what osteoporosis is, and how astronauts taking PTH can fight it (this was explored in detail in TMN article 11272022). The microscopic structural reinforcement structures (osteons and trabeculae) in our bones erode, gets degraded in the disorder called osteoporosis.  Imagine a tall building or a bridge; columns or pillars are the elements of structural reinforcement in them. A corrosion of those pillars and columns weakens the building, and may cause their collapse. Astronauts in space don’t have the force of gravity to stimulate bone building, so bone loss, osteoporosis develops. PTH, when administered in short bursts, stimulates osteoblasts, and increases bone formation, and that could prevent bone loss in astronauts. Although astronauts could inject themselves with PTH, however, for long spaceflights they would have to carry lots of PTH doses. It would be better if they could produce PTH during the flight itself.  Making human PTH inside a food item would create a continuous supply of PTH.

Second, let’s talk about what is entailed with the genetic engineering of the lettuce. In general, we do genetic engineering when we are adding a new gene or inactivating an existing gene in an organism.

Why are we trying to transplant pig hearts into human beings?

TeachableMedicalNews article 10222022

Teachable moment in classrooms:

  1. chemical basis of life chapter – genetic engineering can remove genes from, or add genes to DNA molecules (the chromosomes)
  2. cellular basis of life chapter – removing a gene removes a protein, while adding a gene adds proteins to the functional toolkit of cells
  3. hear chapter – blood pumping action of left ventricle delivers oxygen, nutrients to all organs
  4. immune system chapter – role of HLA proteins in the recognition of self and non-self antigens

The news item:  Recently the following news article was published:

Two pig heart transplants succeed in brain-dead recipients

Surgeons at New York University (NYU) have successfully transplanted genetically-engineered pig hearts into two brain-dead people, researchers said on Tuesday, moving a step closer to a long-term goal of using pig parts to address the shortage of human organs for transplant.

The article states that experimental transplantation of pig hearts into brain dead humans was carried out, and the hearts remained functional for the three days of the study.  The article also states that the transplanted hearts came from genetically engineered pigs in which 4 genetic alterations were done to prevent rejection, and 6 genetic modifications were done to prevent incompatibilities between pigs and humans.

So, Why Do I Care??  There are about 600,000 people in the US whose heart is about to give out (end stage heart disease), but there are only about 3800 heart transplant operations. Several people die each day because suitable donor hearts are not available for transplantation. If we could routinely transplant pig hearts into humans that would save thousands of lives.

Plain English, Please!!!  First, let’s talk about why people need a heart transplant. End stage heart disease happens either because of the degeneration of heart muscle from coronary artery disease or from viral infection, or because of heart valve problems.  Once the pumping efficiency of the heart drops

Powered by WordPress & Theme by Anders Norén